Discharge of superior collicular neurons during saccades made to moving targets.
نویسندگان
چکیده
1. The discharge of neurons in the deeper layers of the monkey superior colliculus was recorded during saccades made to stationary and to smoothly moving visual targets. 2. All neurons that discharged for saccades made to stationary targets also discharged during saccades made to moving targets, but there was a systematic shift in the saccade vector yielding maximal activity (i.e. center of the movement field) of collicular neurons for the latter class of movements. The shift moved the center of the movement fields toward larger-amplitude pursuit saccades for target motion away from the fovea, in comparison with saccades made to stationary targets. However, the discharge at the center of the movement field for pursuit saccades was 14% lower when averaged over the sample of recorded cells. 3. The saccades made during pursuit tracking of moving visual stimuli have different dynamics than saccades made to stationary targets. At similar amplitudes pursuit saccades are slower, and their velocity profiles often show secondary velocity peaks or inflection points and have longer-duration decelerating phases. 4. The combined experimental observations of a change in saccade dynamics and the shift in movement fields in collicular neurons for pursuit saccades are compatible with the hypothesis that saccades made to moving targets are controlled by neural processing in two partially separate pathways. In this theory, one path is concerned with correction of a presaccadic retinal position error (a path that includes the colliculus) and another path is concerned with position extrapolations based on the velocity of the moving target (a path that does not include the colliculus).
منابع مشابه
Sensorimotor integration in the primate superior colliculus. I. Motor convergence.
Orienting movements of the eyes and head are made to both auditory and visual stimuli even though in the primary sensory pathways the locations of auditory and visual stimuli are encoded in different coordinates. This study was designed to differentiate between two possible mechanisms for sensory-to-motor transformation. Auditory and visual signals could be translated into common coordinates in...
متن کاملThe superior colliculus and the steering of saccades toward a moving visual target.
Following the suggestion that a command encoding current target location feeds the oculomotor system during interceptive saccades, we tested the involvement of the deep superior colliculus (dSC). Extracellular activity of 52 saccade-related neurons was recorded in three monkeys while they generated saccades to targets that were static or moving along the preferred axis, away from (outward) or t...
متن کاملA circuit model for saccadic suppression in the superior colliculus.
Attenuation of visual activity in the superficial layers (SLs), stratum griseum superficiale and stratum opticum, of the superior colliculus during saccades may contribute to reducing perceptual blur during saccades and also may help prevent subsequent unwanted saccades. GABAergic neurons in the intermediate, premotor, layer (SGI), stratum griseum intermedium, send an inhibitory input to SL. Th...
متن کاملDependence of saccade-related activity in the primate superior colliculus on visual target presence.
Neurons in the intermediate layers of the superior colliculus respond to visual targets and/or discharge immediately before and during saccades. These visual and motor responses have generally been considered independent, with the visual response dependent on the nature of the stimulus, and the saccade-related activity related to the attributes of the saccade, but not to how the saccade was eli...
متن کاملSaccades to somatosensory targets. II. motor convergence in primate superior colliculus.
1. We examined cells with saccade-related activity in the superior colliculus (SC) of monkeys performing saccades to both somatosensory and visual targets. Our goals were 1) to determine whether signals from these separate sensory systems have converged onto a common motor pathway by the level of the SC; 2) to determine the frame of reference of somatosensory saccade signals in the SC; and 3) t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 76 5 شماره
صفحات -
تاریخ انتشار 1996